

Question		Answer	Marks	Guidance	
2	(i)	A L R B $f(L)$ $f(R)$ 3 3.382 3.618 4 2.146 1.910 3.382 3.618 3.764 4 1.910 1.875 3.618	B1 B1 B1 B1 B1 B1 [6]	R and L $f(R)$ and $f(L)$ A L and R $f(L)$ and $F(R)$ A	-1 once only for incorrect accuracy, but condone 1.91. Surds OK, but lose the accuracy mark. (Q says 3dp.)
2	(ii)	Saves a function evaluation	B1 [1]		Has to be a comment about function values.
2	(iii)	eg Setting the control on a gas fire to achieve a room temperature of 20C. Function could be (temp-20) ${ }^{2}$. (This example shows that optimising can be used to "achieve".) Note that the domain cannot be time based ... i.e finding when something occurred. One cannot go back in time to take a reading!	B1 [1]	Optimisation with need to sample at discrete intervals.	"Deepest point in seabed" example seen. This is acceptable, assuming that depth soundings are taken at points, and ignoring the fact that the domain is two dimensional rather than one dimensional.

3	(i)	"is a subset of" Z "shares at least one element with" Z	M1 A1 M1 A1 [4]	directed graph on 3 vertices all correct undirected on 3 vertices all correct	Arcs must either have an arrow at each end. or no arrows.
3	(ii)		M1 A1 B1 B1 [4]	R subset of Q no other subsets $\mathrm{P} \cap \mathrm{Q}$ $P \cap Q^{\prime}$	Allow area split in two, with third area. eg If P and R shown intersecting then can score M1 A1 B0 B0.

Question

Question		Answer	Marks	Guidance	
4	(iii)	Profit $=100 \mathrm{X}+70 \mathrm{Y}$$(5,12.5)$ or $(5,12)$$(8,10)$ 1375 or 1340 $(11,5)$ 1500 1450 $£ 1500$ profit.	B1 M1 A1 [3]	optimisation 1500 seen cao SC B1 for 1500 without the preceding M mark	either profit line or evaluating and comparing at their 3 appropriate points (OK if on graph)
4	(iv)	Solution in range $(10 \pm 1 / 4,62 / 3 \pm 1 / 4)=(9.75-10,25,6.41 \dot{6}-6.916)$ Identification of one of $(9,7),(10,6)$ and $(11,5)$. $\begin{array}{lccl}\text { Evaluation at all three of } & (9,7) & (10,6) & (11,5) \\ & \mathbf{1 3 9 0} & \mathbf{1 4 2 0} & \mathbf{1 4 5 0}\end{array}$ So 11 of X and 5 of Y	B1 B1 M1 A1 [4]	cao cao cao	looking for $(10,62 / 3)$

Question		Answer	Marks	Guidance	
$\mathbf{5}$	(iv)		4 simulations, each ending with 6 bags all scenarios correct	M1	Condone one slip. Condone simulating at (4,0) if correctly done. 6 bags can be implied by probs of thirds or sixths.
			[2]		
$\mathbf{5}$	(v)		Either averaging correct probabilities or sum of singles/30	M1 A1	Correct computation, but allow 1 slip or omission. Correct answer for their simulations.

